ANALYSIS OF MYCOPLASMA GENITALIUM STRAINS ISOLATED FROM PREGNANT WOMEN AT AN ACADEMIC HOSPITAL IN PRETORIA, SOUTH AFRICA

Mafunise M1, Le Roux MC1, de Villiers BE1, Ditsele RMM1,2

1Department of Microbiological Pathology
2NHLS Dr George Mukhari Academic Hospital

Sefako Makgatho Health Sciences University
South Africa
Background

- *M. genitalium* = smallest self-replicating prokaryote (580kb) [*E. coli* = 4600kb]
- 1980: first isolated from 2 men with NGU
- Sexually transmitted pathogen
- Causes cervicitis, abnormal vaginal discharge, urethritis, pelvic inflammatory disease (PID) and infertility in women.
 - Association with adverse pregnancy not confirmed
- In men: urethritis, proctitis, infertility
Background Cont.

- Lacks a cell wall, it cannot be cultured on standard laboratory medium
- Serology insensitive = cross reaction with *M. pneumoniae*
- Nucleic acid amplification tests (NAATs) have become the gold standard of detection [PCR]
Background Cont.

• Absence of the cell wall: resistant to penicillins, cephalosporins, vancomycin
• Cannot readily be cultured → difficult to test antimicrobial susceptibility
• CDC recommends tetracyclines, macrolides or fluoroquinolones for treatment
• Treatment mainly syndromic for genital discharge (MUS and VDS)
• In South Africa: Guidelines revised in 2015
 Doxycycline → Azythromycin
Background Cont.

- Antimicrobial resistance and typing of strains rely on DNA sequence data
- High levels of sequence variability between clinical isolates are seen which may be associated with antimicrobial resistance
- Data is scanty regarding prevalence, antimicrobial resistance and circulating types of *M. genitalium* in South Africa due to the syndromic treatment approach
Aim

• To determine the prevalence and the molecular characteristics of *M. genitalium* strains from pregnant women attending the termination of pregnancy and antenatal clinics at Dr George Mukhari Academic Hospital
Methods

• Protocol approved by the Sefako Makgatho Health Sciences University Research and Ethics Committee (SMUREC) (SMUREC/P/138/2015: PG)

• Vaginal swabs collected from women attending the termination of pregnancy (TOP) and antenatal (ANC) clinics at the DGMAH between June and December 2015

• Screened for *M. genitalium* using a commercial real time PCR assay (Sacace, Italy)
Methods Cont.

• Antimicrobial resistance analysis:
 • Genotypic resistance markers determined by sequence analysis:
 • Macrolides: V-region of the 23S rRNA (Jensen et al, 2008)
 • Fluoroquinolones: gyrA, and parC genes (Deguchi et al, 2002)
 • BLAST/BioEdit/MAFFT technology used to compare/align sequences with the *M. genitalium* G37 complete genome [L43967.2] and strains with macrolide and fluoroquinolone-associated mutations
• **Genotyping:**

 Strains were typed using:

 • *mgpB* single-nucleotide polymorphism typing (SNP)

 281-bp fragment of *M. genitalium* adhesion gene amplified and sequences aligned and compared with strain G37 [L43967.2], as well as sequence types 1 to 55 as described previously (Hjorth *et al*, 2006; Pond *et al*, 2014)

 • MG309 short tandem repeat (STR) analysis

 Sequences were aligned with *M. genitalium* strain G37 [KC445182.1] which contains 12 copies of the STR (AGT or AAT) (Cazanave *et al*, 2012).
Results

• Specimens were collected from 100 participating women (TOP:50; ANC:50) with a mean age of 23.0 years (TOP) and 28.5 years (ANC)

• *M. genitalium* detected in 7 (7.0%) of specimens of which one positive sample could not be detected with further methods
Results Cont.

• **Fluoroquinolone resistance:**

 • No resistance-associated mutations were seen in the \textit{gyrA} genes

 • A \textit{parC} fluoroquinolone resistance-associated mutation was seen in 1 isolate [G248T mutation (Ser→Ile 80)]
Results Cont.

Amino acid sequence alignment of the *M. genitalium* parC gene of clinical isolates with reference strains

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP003772.1 MG 6320</td>
<td>AVGEIMGYHPHCDSIYDARIIRMSQKNN*TTVSIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF947096.1 MG parC</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>M25 ParC Consensus</td>
<td></td>
<td>*</td>
<td>LX</td>
</tr>
<tr>
<td>T30 ParC Consensus</td>
<td></td>
<td>I</td>
<td>*</td>
</tr>
<tr>
<td>T63 ParC Consensus</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>T75 ParC Consensus</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>T76 ParC Consensus</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>M84 ParC Consensus</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

☐ : Mutation (Ser→Ile 80) associated with resistance
Results Cont.

• Macrolide resistance:
 • Macrolide associated mutation A2059G was seen in 2 isolates [2/6: 33.3%]

Mutations associated with macrolide resistance: A2058G
Results Cont.

- **Genotyping:**
 - SNP typing revealed Sequence Types 1, 2, 4 and 39. Two strains were ST 1 (as wild-type), 2 were ST 4 and 1 each was ST 2 and ST 39.
 - Four different types were seen using MG 309 STR analysis; 3 strains had 10 repeats; 2 strains had 12 repeats (as wild-type) and 1 strain each had 11 and 14 repeats.
 - Typing assigned *M. genitalium* to 2 major clusters. Genotypic macrolide and fluoroquinolone resistance was found within cluster B.
Results Cont.
Results Cont.

Demographic and genotypic characteristics of patients with *Mycoplasma genitalium* infection

<table>
<thead>
<tr>
<th>Spec</th>
<th>Clinic</th>
<th>Age</th>
<th>Mutant Fluoroquinolone QRDR: Amino Acid Change</th>
<th>23S rRNA Mutation</th>
<th>mgpB SNP Type</th>
<th>MG309 STR Copy Nr</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GyrA</td>
<td>ParC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T30</td>
<td>TOP</td>
<td>28</td>
<td>WT</td>
<td>S80I WT*</td>
<td>A2059G</td>
<td>ST4</td>
<td>10</td>
</tr>
<tr>
<td>T63</td>
<td>TOP</td>
<td>23</td>
<td>WT</td>
<td>WT*</td>
<td>WT</td>
<td>ST2</td>
<td>14</td>
</tr>
<tr>
<td>T75</td>
<td>TOP</td>
<td>21</td>
<td>WT</td>
<td>WT*</td>
<td>WT</td>
<td>ST4</td>
<td>10</td>
</tr>
<tr>
<td>T76</td>
<td>TOP</td>
<td>19</td>
<td>WT</td>
<td>WT*</td>
<td>WT</td>
<td>ST1</td>
<td>12</td>
</tr>
<tr>
<td>M25</td>
<td>ANC</td>
<td>24</td>
<td>WT</td>
<td>WT</td>
<td>A2059G</td>
<td>ST39</td>
<td>10</td>
</tr>
<tr>
<td>M84</td>
<td>ANC</td>
<td>21</td>
<td>WT</td>
<td>WT*</td>
<td>WT</td>
<td>ST1</td>
<td>12</td>
</tr>
</tbody>
</table>

Legend:
- TOP: Termination of pregnancy clinic; ANC: Ante-natal clinic;
- QRDR: Quinolone resistant determinant region;
- WT: Wild type; WT*: Silent mutation
Discussion

- *M. genitalium* was present in 7.0% of participants
- Frequent undiagnosed STD in this population
- First report of fluoroquinolone resistance-associated mutation in *M. genitalium* in South Africa
- Also first report of MDR *M. genitalium*
- Macrolide resistance-associated mutations in 2 of the 6 isolates
 - Azithromycin only included in the national guidelines in 2015, alarming to already find resistance-associated genes
- *M. genitalium* strains grouped into two major clusters. The resistant isolates clustered together
Conclusion

• As the sample size was small, this study still does not justify changing the South African treatment guidelines for symptomatic patients

• However, the prevalence of macrolide resistance reported in this study, emphasises the importance of surveillance to adopt the optimal guidelines for syndromic management of MUS and VDS

• In addition, resistance against both macrolides and fluoroquinolones as found in this study and other studies all over the world continues to stress the need for alternative treatment regimes
Acknowledgements

- VLIR funding
- Dept of Obstetrics & Gynaecology
- Sister Makathini (TOP clinic)