CMV Diagnosis and Management in children

Melissa Lawler
Paediatric Infectious Disease
UKZN
Herpesviridae

Betaherpesvirinae

Human cytomegalovirus double-stranded DNA
HCMV Pathophysiology

Site of inoculation in healthy host → mucosal surface in the upper respiratory or genital tract

Sources of infection: oropharyngeal secretions, urine, cervical and vaginal secretions, semen, breast milk, tears, feces and blood

Viraemia – dissemination

Shedding after 4 to 6 weeks continues for months to years

Latency

Disease = Reactivation/primary infection in disabled immune system
CMV Seroepidemiology
Clinical findings

NORMAL HOST

Early childhood – saliva in family or day care settings

Adulthood- sexually and via saliva, urine, blood transfusions or transplanted organs

Mononucleosis (about 8% of infectious mononucleosis cases)

Rare complications include pneumonia, hepatitis and CNS disease

In children <7 years of age, CMV infection may result in severe liver or respiratory disease

Recurrent infection is rare in the normal host
Clinical findings

NEONATE

Congenital, intrapartum and postnatal routes of infection

Postnatal
- Cervical secretions during vaginal delivery
- Ingestion of CMV-infected breast milk
- Term - rarely result in significant symptoms or sequelae
- Low-birth weight premature infants
 - Worsening respiratory status, neutropenia, or sepsis
- Long-term sequelae independent from prematurity unclear
Impact of HIV on congenital CMV

HIV-infected women
 CMV seropositive
 More frequent CMV recurrences

Increased risk for congenital CMV infection in neonates

HIV-infected - 3-fold higher risk for symptomatic congenital CMV infection
CMV may act as a cofactor for HIV disease progression

Risk for infant mortality is increased in HIV-CMV-coinfected infants

Accelerated progression of CNS disease in survivors

Resource-limited settings - high rate of coinfections in pregnant women with HIV-1

? influences the transplacental transmissibility of CMV
Placental Infection
- Extensive
- Reduced
- Suppressed

Primary
Recurrent

Fetal Transmission

Symptomatic (5% – 10%)
Intrauterine growth retardation, retinitis, microcephaly, jaundice, hepatosplenomegaly

20% – 40%

Permanent Damage (50% – 80%)
Mental retardation, deafness, blindness

Death (20%)

Late Sequelae (7% – 25%)
Deafness, learning deficiencies

Asymptomatic (90% – 95%)

0.2% – 2.2%
Clinical clues

IUGR
Hydrops
generalized petechiae, purpura
Thrombocytopenia
Jaundice
Hepatosplenomegaly
Pneumonitis
Microcephaly, periventricular calcifications, seizures
Chorioretinitis
sensorineural hearing loss
Bone abnormalities, abnormal dentition, and hypocalcified enamel
Children with HIV
Associated with T cell activation in HIV infected children
Often other opportunistic infection

CMV pneumonia
 Increased mortality and treatment failure in HIV-infected infants
 Viraemia peaks around 3–4 months of age
 Interstitial pneumonitis
CMV GI disease
 Colitis – stool occult blood or frank bloody

CMV retinitis
 Children- relatively rare (developed world)
 Necrotic rapidly progressing retinitis with brushfire retinitis
 Children- strabismus or failure to fix and follow objects may be important clues to the diagnosis
Diagnostic methods for CMV

Serology
Antigenaemia
PCR
Cytology/Histology
Culture
Immunohistochemistry
Diagnostic methods for CMV

Serology
Antigenaemia
PCR
Cytology/Histology
Serology

CMV IgG - Past infection

CMV IgM - Acute or recent infection
 ELISAs are the most widely used and are based on crude viral preparations
 Lack specificity for primary infection
 false-positive results
 can persist for months after primary infection
 reactivated CMV infections
 Inaccurate in immunocompromised
 Pregnant women
Serology

IgG avidity assays distinguish primary from non-primary CMV infection

Avidity increases over time reflecting maturation of the immune response

Reported as the avidity index
Antigenemia

Detect the viral pp65 antigen
 Structural late protein expressed in blood leukocytes during the early phase of the CMV replication cycle
 Immunofluorescence assay for the CMV

Limited to detection of the virus in leukocytes

Qualitative result and quantitative
 Correlating closely with viraemia and clinical disease severity in immunosuppressed populations

Figure 4 CMV pp65 antigens detected in nuclei of peripheral blood neutrophils
Disadvantages

Labor intensive with low throughput
Not amenable to automation
Subjective bias
Have to be immediately processed
(within 6 hours)

Neutropenic patients- false-negative results
Polymerase Chain Reaction Amplification

Widely available rapid and sensitive method of CMV detection based

- amplification of nucleic acids
- target major immediate early and late antigen genes in their well conserved regions

DNA can be extracted from

- whole blood, leucocytes, plasma, or any other tissue (tissue biopsy samples) or fluid (urine, CSF, BAL)

Specimen deterioration with time after sample collection is not as problematic with PCR assays
Qualitative or quantitative

Threshold of the qualitative method calibrated to prevent over-detection

Quantitative PCR (Real-Time PCR)
more expensive compared to the antigenemia assay
rapid and can be automated
Cytology/ Histology

Characteristics intranuclear inclusions in specimens

Saliva, milk, cervical and tracheal secretions, and in touch preparations from biopsy or necropsy tissues

Hallmark of CMV infection "owl's eye"

Papanicolaou or hematoxylin-eosin stains

Clusters of small intracytoplasmic inclusions may also be seen

Sensitivity of the standard cytologic techniques is low relative to virus isolation

Irrespective of the type of specimen
Diagnosing Congenital CMV

Antibody titers
- maternal CMV IgG crosses the placenta
- neonates mount weak IgM responses

Viral detection in body fluids
- PCR, culture, or antigen testing (pp65 antigen)
 - first 3 weeks of life

>3 weeks – Congenital vs postnatally acquired infection

Saliva and urine - newborns shed high levels of the virus

Saliva samples
- more easily obtained
- As reliable as urine samples in diagnosing CMV
Congenital CMV Infection

Asymptomatic
- No known role for antiviral therapy in infants with congenital CMV infection if asymptomatic even if audiological assessment abnormal
- Careful serial physical exam, monitor head growth
- Serial audiological evaluation throughout early childhood

Symptomatic
- Careful Evaluation for CNS Disease
 - Head ultrasound and/or MRI
 - Ophthalmology consult
 - Consider lumbar puncture
 - Detailed audiological assessment (ABR)

Symptomatic With No Evidence of CNS Involvement
- Consider Use of Antiviral Therapy In the Setting of Any Severe CMV End-Organ Disease Process
 - Hepatitis
 - Pneumonia
 - Refractory thrombocytopenia
 - Ganciclovir by Intravenous Route
 - 6 mg/kg/day BID for 42 days
 - Adjust dose for renal insufficiency
 - Monitor CBC, renal function
 - Consider GCSF for neutropenia
 - Valganciclovir by Oral Route if able to take enteral medications
 - 16 mg/kg/dose every 12 hours
 - Same toxicity profile as for ganciclovir

Symptomatic With Evidence of CNS Involvement
- Antiviral Therapy Should be Used In Symptomatic Congenital Infection With CNS Involvement
 - Improves SNHL prognosis
 - May improve outlook for other neurodevelopmental outcomes
 - Ganciclovir by Intravenous Route
 - 6 mg/kg/day BID for 42 days
 - Adjust dose for renal insufficiency
 - Monitor CBC, renal function
 - Consider GCSF for neutropenia
 - Valganciclovir by Oral Route if able to take enteral medications
 - 16 mg/kg/dose every 12 hours
 - Same toxicity profile as for ganciclovir
Diagnostic Assessment and Subspecialty Consultations in Infants with Suspected Congenital CMV Infect

<table>
<thead>
<tr>
<th>Potential Diagnostic Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diagnostic virology</td>
</tr>
<tr>
<td>• PCR and/or culture of infant urine, blood and saliva</td>
</tr>
<tr>
<td>• Specimens must be obtained prior to day 21 of life to confirm congenital infection (versus post-natal acquisition)</td>
</tr>
<tr>
<td>• Neurodiagnostic imaging</td>
</tr>
<tr>
<td>• Head ultrasound good screening exam in neonatal period</td>
</tr>
<tr>
<td>• MRI of brain more definitive for symptomatic/affected infants</td>
</tr>
<tr>
<td>• Ophthalmological evaluation</td>
</tr>
<tr>
<td>• Audiological evaluation</td>
</tr>
<tr>
<td>• Newborn hearing screening in nursery</td>
</tr>
<tr>
<td>• Definitive auditory evoked response (ABR) on follow-up evaluation</td>
</tr>
<tr>
<td>• CBC, platelet counts, transaminases, bilirubin for symptomatic infants</td>
</tr>
<tr>
<td>• EEG if seizures clinically evident or suspected</td>
</tr>
</tbody>
</table>
Neuroimaging assessment

Cerebral ultrasound, CT, and MRI for suspected or proven congenital infection

Before 19 weeks post menstrual age
 Lissencephaly with a thin cortex, cerebellar hypoplasia, ventriculomegaly, periventricular calcification and delayed myelination

18-24 weeks
 Migrational abnormalities

CNS lesions may include delayed myelination, dysmyelination and white matter disease

All cases, calcification is a common finding
Ophthalmologic and audiology assessment

Ophthalmology
- chorioretinitis, optic atrophy, and cortical visual impairment
- Strabismus is also a common long-term ophthalmologic complication

Audiological assessment
- SNHL may be absent at birth
- progressive in nature
- frequent evaluations are required throughout childhood
Diagnosis in HIV

CMV viraemia
- Usually present in end-organ disease
- Low CD4 cell counts in the absence of end-organ disease
- Negative serum or plasma PCR assay also does not rule out CMV end-organ disease
- Not recommended for diagnosis of CMV poor PPV

CMV retinitis
- 70% in the blood
- Rest diagnosed by clinical criteria plus response to therapy
- CMV DNA detected in the vitreous in ~80% of cases
Pneumonitis

Diagnosis difficult

Consistent clinical and radiological findings
 Multiple CMV inclusion bodies associated with inflammation in lung tissue or cytology
 Absence of any other pathogens

Isolation of CMV from isolates including BAL does not prove that the child has CMV pneumonia

Co-infection with both PJP and CMV is common
Lung biopsy → gold standard

pp65 - sensitivity and specificity 73% and 50%

VL

Hsiao et al

 Significantly higher CMV viral load in infants with probable CMV pneumonia
 No cut-off identified
 Whole blood HCMV viral load above 4.1 log copies/ml is useful in clinical practice
 HIV infected with probable HCMV pneumonia
 Ganciclovir treatment
Management of Congenital Infections

Who???

Central nervous system (CNS) involvement, including SNHL
Considered in infants with serious end-organ disease
First month of life

What????

Ganciclovir
Valganciclovir

Ganciclovir

Synthetic acyclic nucleoside analogue
Safe and well-tolerated in newborns
No sustained effect on CMV shedding
May be long-term neurodevelopmental benefit for some infants with congenital CMV

6 weeks of intravenous ganciclovir therapy is recommended in the management of babies with symptomatic congenital CMV disease involving the CNS

6 mg/kg/dose IV 12 hourly
Monitor for toxicity
 Full blood counts
 serum electrolytes and renal function

Neutropenia
 H- GCS factor therapy can be administered

Dosage adjustments made, when treating infants with impaired renal function

Realistic expectations-will not reverse established CNS injury
Valganciclovir

Oral prodrug of ganciclovir
Neonates who can take enterally
Very well absorbed following oral administration
Rapidly metabolized following oral dosing into ganciclovir
Studies in neonates have demonstrated stable drug levels following oral administration
Dose – 16mg/kg/dose 12 hourly po

6 weeks versus 6 months of valganciclovir performed by the collaborative antiviral study Group
Retinitis

Systemic therapy

- Disease part of systemic infection

FDA – Ganciclovir, Foscarnet and Cidofovir

Higher induction dose for 2-3 weeks

Maintenance to prevent relapse
 - Stop once CD4 > 100 cells/μL for 3-6 months

Antivitreal therapy

- Ganciclovir/Foscarnet

 - Sight threatening disease
 - Induction – 2-3 x weekly
 - Implant – no longer available

Long-term suppression of CMV retinitis – HAART
Recommendations for Treating Cytomegalovirus (CMV) Infections (page 2 of 2)

Managing CMV Esophagitis or Colitis
- Doses are the same as for CMV retinitis.

Preferred Therapy:
- Ganciclovir 5 mg/kg IV q12h, may switch to valganciclovir 900 mg PO q12h once the patient can absorb and tolerate PO therapy (BII)

Alternative Therapy:
- Foscarnet 60 mg/kg IV q8h or 90 mg/kg IV q12h (BII)—for patients with treatment limiting toxicities to ganciclovir or with ganciclovir resistance, or
- Oral valganciclovir may be used if symptoms are not severe enough to interfere with oral absorption (BII), or
- For mild cases: If ART can be initiated or optimized without delay, withholding CMV therapy may be considered (CIII).

Duration of Anti-CMV Therapy:
- 21–42 days or until signs and symptoms have resolved (CII)

Note: Maintenance therapy is usually not necessary, but should be considered after relapses (BII)

Managing Well-Documented CMV Pneumonitis
- Doses are the same as for CMV retinitis.
- Treatment experience for CMV pneumonitis in HIV patients is limited. Use of IV ganciclovir or IV foscarnet is reasonable (CIII).
- The role of oral valganciclovir has not been established.
- The duration of therapy has not been established.

Managing CMV Neurological Disease
- Doses are the same as for CMV retinitis.
- **Treatment should be initiated promptly.**
- Combination of ganciclovir IV + foscarnet IV to stabilize disease and maximize response; continue until symptomatic improvement (CIII).
- Continue therapy until resolution of neurologic symptoms.
- Optimize ART to achieve viral suppression and immune reconstitution (BIII).