1. Introduction

The statement is an update of the original document first published in the *Southern African Journal of Critical Care* in 2001, which was necessitated by the recent licensing of the newest member of this class of antibiotics, ertapenem. Ertapenem is the first of a new group of carbapenems, which differ significantly from the earlier agents. The activity of ertapenem, similar to that of the earlier agents, includes *Pseudomonas* and *Acinetobacter* species, they are ideal antibiotics for treatment of severe nosocomial infections. In contrast, ertapenem has limited *in vitro* activity against the latter non-fermentative Gram-negative bacteria and is therefore more suitable for the treatment of certain severe community-acquired infections. This statement arises out of concerns about the general abuse of antibiotics such as the carbapenems, with the primary intention of highlighting the appropriate use of these agents.

2. Ertapenem (group 1)

2.1 Appropriate use

- This agent is most appropriately used for the treatment of severe community-acquired infections. However, the agent should not be used as first-line empirical therapy, except in certain specific circumstances.
- This agent may also be used in a few specific instances for nosocomial infections where *Pseudomonas* spp. are not deemed important pathogens, such as early nosocomial pneumonia acquired out of the intensive care unit (ICU).
- This agent is ideal for directed therapy based on the results of microbiological testing, and especially for the treatment of infections with isolates demonstrating ESBLs.
- This agent is well suited for the treatment of chronic and recurrent or persistent infections in cases in which cultures are most likely to demonstrate resistant Enterobacteriaceae or that are polymicrobial in nature; however, it is not effective against *Pseudomonas* and *Acinetobacter* spp.
- It is indicated for the treatment of the following infections, with specific indications:
 - Pneumonia
 - Surgical infections including intra-abdominal, skin and soft-tissue and gynaecological infections

Please forward all comments to: Dr A J Brink, PO Box 1873, Houghton, 2041, tel (011) 726-6260, e-mail brinka@ampath.co.za
2.2 Pneumonia (Table I)

2.2.1 Appropriate use in pneumonia

In the case of pneumonia, this agent may be indicated in the following circumstances:

- The elderly, especially high-risk cases with underlying co-morbid illness and patients living in long-term care facilities where no risk factors for pseudomonal infections are present.*
- Alcoholics
- Hospital-acquired pneumonia where no risk factors for pseudomonal infections are present*
- Nosocomial aspiration pneumonia/suspected anaerobic infection/lung abscess
- Cases known to be, or suspected of being, infected with pathogens resistant to standard antimicrobial agents, particularly extended-spectrum β-lactamase-producing GNB
- Patients who have failed standard first-line antibiotic treatment for CAP (particularly as part of directed antibiotic therapy based on the results of microbiological testing)

Inappropriate use

- Empirical treatment of nosocomial pneumonia in the ICU
- First-line, empirical treatment of CAP
- Presence of risk factors for pseudomonal infections*

*Risk factors for pseudomonal infections may include:
- Infections acquired in the ICU
- Patients with structural lung disease
- Patients who have received broad-spectrum antibiotic Rx for > 7 days in the previous month
- Patients who have recently been hospitalised (because of nosocomial colonisation)

GNB = Gram-negative bacilli; CAP = community-acquired pneumonia.

2.3 Surgical infections (Table II)

2.3.1 Appropriate use in intra-abdominal infections

In the case of community-acquired intra-abdominal surgical infections, this agent could be used for treatment of patients in the following settings:

- Severe sepsis, e.g. patients with organ dysfunction, requiring inotropes, with an Acute Physiology and Chronic Health Evaluation (APACHE II) score > 20 or requiring ICU admission for conditions such as:
 - Acute appendicitis, ruptured or perforated appendix and peri-appendical abscess
 - Acute diverticulitis with perforation and/or abscess
 - Acute cholecystitis (including gangrenous) with either rupture or perforation
 - Acute gastric and duodenal perforation
 - Traumatic perforation of the intestine
 - Intra-abdominal abscess including liver and spleen.
- Cases at risk of having ESBL-producing and/or fluoroquinolone-resistant micro-organisms, e.g. LTCF residents; this should be culture driven as these patients are...
also at risk of *Pseudomonas* and *Acinetobacter* spp. infections.

- As part of directed therapy in cases with isolates demonstrating the presence of ESBL and/or based on the results of other microbiological testing, including evidence of polymicrobial infections.

2.3.2 Appropriate use in skin and soft-tissue infections

In the case of community-acquired skin and soft-tissue surgical infections, this agent should be reserved for treatment of patients in the following settings:

- Severe cases of community-acquired necrotising fasciitis or Fournier’s gangrene requiring ICU admission.
- Severe cases at risk of having ESBL-producing and/or fluoroquinolone-resistant micro-organisms e.g. LTCF residents.
- As part of directed treatment in cases with isolates demonstrating the presence of ESBLs and/or based on the results of microbiological testing including evidence of polymicrobial infections
- As directed outpatient monotherapy in cases with confirmed polymicrobial and/or resistant infections, e.g. LTCF residents.

2.3.3 Inappropriate use in surgical infections

- This agent should not be used for the empirical treatment of nosocomial intra-abdominal infections, particularly not in cases with prolonged pre-operative length of hospital stay and prolonged pre-operative antimicrobial therapy (more than 2 days); these factors are significant predictors of antibiotic failure resulting in recurrent infection.
- This agent should not be used in community-acquired intra-abdominal infections in patients at high risk of post-operative mortality, where the presence of infection with multiresistant bacteria including *Pseudomonas* spp. might be common. In these high-risk patients, use of broader-spectrum, antipseudomonal antibiotics may be warranted:10
 - Immunosupression resulting from prior therapy for transplantation, cancer or inflammatory diseases.
- This agent should not be used for mild skin and soft-tissue infections.
- This agent should not be used as directed therapy for infections caused by *Staphylococcus aureus*, whether due to methicillin-sensitive or resistant isolates.

2.4 Urinary tract infections

2.4.1 Appropriate use in urinary tract infections

- This agent is indicated for the treatment of severe, complicated urinary tract infections particularly in cases at risk of having resistant Gram-negative pathogens.
- As part of directed therapy in cases with isolates demonstrating the presence of ESBLs and/or based on the

Table II. Ertapenem (group 1) — surgical infections

<table>
<thead>
<tr>
<th>Appropriate use</th>
<th>Inappropriate use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-abdominal infections (IAIs)</td>
<td>• Empiric treatment of nosocomial IAI</td>
</tr>
<tr>
<td>• Severe community-acquired IAI in patients with organ dysfunction, requiring inotropes, with an APACHE score > 20 or requiring ICU admission</td>
<td>• Community-acquired IAI at risk of infection with Pseudomonas spp:</td>
</tr>
<tr>
<td>• Cases at risk of having ESBL-producing and/or fluoroquinolone-resistant micro-organisms, e.g. LTCF residents (this should be culture-driven as these patients are also at risk of Pseudomonas and Acinetobacter spp. infections)</td>
<td>• Prior hospitalisation (as late-onset sequelae of nosocomial colonisation)</td>
</tr>
<tr>
<td>• Directed treatment in cases with isolates demonstrating the presence of ESBL and/or based on the results of other microbiological testing, including evidence of polymicrobial infections</td>
<td></td>
</tr>
<tr>
<td>Skin and soft-tissue infections</td>
<td>• Immunosupression resulting from prior therapy for transplantation, cancer or inflammatory diseases</td>
</tr>
<tr>
<td>• Severe cases of community-acquired necrotising fasciitis or Fournier’s gangrene requiring ICU admission</td>
<td></td>
</tr>
<tr>
<td>• Severe cases at risk of having ESBL-producing and/or fluoroquinolone-resistant micro-organisms e.g. LTCF residents</td>
<td></td>
</tr>
<tr>
<td>• As part of directed treatment in cases with isolates demonstrating the presence of ESBLs and/or based on the results of microbiological testing including evidence of polymicrobial infections</td>
<td></td>
</tr>
<tr>
<td>• As directed outpatient monotherapy in cases with confirmed polymicrobial and/or resistant infections, e.g. LTCF residents</td>
<td></td>
</tr>
</tbody>
</table>

ESBL = extended spectrum beta-lactamase; LTCF = long-term care facility.
results of microbiological testing.

2.4.2 Inappropriate use in urinary tract infections

- This agent should not be used for first-line, empirical therapy of community-acquired urinary tract infections.

2.5 Other considerations for ertapenem therapy

- This agent may be used as therapy for infections acquired in the ICU, but only as part of directed therapy based on results of microbiological testing, and especially for the treatment of infections with isolates demonstrating ESBLs.
- There is emerging evidence that shorter duration of therapy is as effective as longer therapy and has the potential benefit of less impact on resistance development.
- If indicated for cases of severe community-acquired pneumonia, empirical treatment with this agent should be combined with a macrolide or fluoroquinolone until culture results become available.

3. Imipenem/cilastatin and meropenem (group 2) (Table IV)

3.1 Appropriate use

- These agents are most appropriately used for the early, timeous treatment of severe nosocomial infections in the critically ill patient or in the critical care setting, particularly when no other antibiotic appears to be suitable, or is available. In this setting these agents may be used as empirical therapy for severe nosocomial infections, based on knowledge of local surveillance data from a particular unit. They may also be suitable for use where first-line empirical therapy against Gram-negative organisms has failed.
- They should ideally be used as specific antibiotic therapy directed against significant isolates cultured from appropriate specimens, and should be prescribed according to the results of antibiotic susceptibility testing. This is where close interaction with the clinical microbiologist and the microbiology laboratory will be of major assistance.
- These agents may be necessary for antibiotic therapy of certain conditions in which there is chronic pseudomonal infection, such as bronchiectasis, cystic fibrosis, and immune deficiency disorders. Where these agents are used for the therapy of patients with pseudomonal infection in frail care settings, this should be done with consideration of the results of culture and sensitivity testing and they should not be considered as first-line therapy.
- Although not considered as primary therapy in most cases, these agents may be considered for use in neutropenic sepsis, severe abdominal sepsis in certain specific settings, and meningitis. The carbapenem recommended for the treatment of meningitis is meropenem.

3.2 Inappropriate use

- Neither of these agents is indicated for the routine treatment of otitis media, acute exacerbations of chronic bronchitis, surgical prophylaxis or first-line treatment of community-acquired infections, such as pneumonia or gynaecological or urological infections.
- Although these two agents provide Gram-positive cover, they are not indicated for the treatment of nosocomial or community-associated Gram-positive sepsis.
- Unnecessary use of these carbapenems, particularly in the ICU setting, may select for multiresistant and difficult-to-treat infections, such as Stenotrophomonas maltophilia, Burkholderia spp., etc.
3.3 Other considerations

- Monotherapy with these carbapenems is suitable in most circumstances, but where infections with *Pseudomonas* spp. are suspected or proven, particularly bacteremic infections, combination therapy together with an aminoglycoside or an appropriate fluoroquinolone (e.g. ciprofloxacin) may be considered.

- The use of metronidazole or other anti-anaerobic agents together with these carbapenems is not necessary except in the case of infections with *Clostridium difficile*.

- Appropriate therapeutic dosing is essential since underdosing in the face of high minimum inhibitory concentrations (MICs) may be associated with decreased efficacy and increased resistance. Monitoring of the MIC is useful in that it may indicate future antibiotic susceptibility trends and may influence dosing. This is an area in which the advice of the clinical microbiologist is particularly helpful.

- There is emerging evidence that shorter duration of therapy for certain nosocomial infections such as ventilator-associated pneumonia is as effective as longer therapy and has the potential benefit of reducing the incidence of hospital-acquired superinfection or reinfection with multiresistant bacteria or *Candida* spp., while simultaneously reducing antibiotic pressures.

- Because of the risk of selecting for resistance, initial empirical broad-spectrum treatment with imipenem or meropenem should be ‘de-escalated’ or ‘tailored’ to a narrow-spectrum agent, once the identity and susceptibility profiles of the infecting pathogens are known. If a less resistant pathogen is identified, it should be mandatory to de-escalate antibiotic therapy with these carbapenems to an agent with a narrower spectrum of activity.

4. References

5. Acknowledgements

The Working Group meetings were sponsored through an unrestricted educational grant from MSD. Representatives from the company attending the meetings had observer status.

6. Endorsement

Endorsed by the Critical Care Society of Southern Africa, the South African Thoracic Society, and the Federation of Infectious Diseases Society of Southern Africa.

7. Disclaimer

This statement is published for educational purposes only. The recommendations are based on currently available scientific evidence together with the consensus opinion of the authors.

7. Working group

A J Brink (Drs Du Buisson, Bruinette and partners, Ampath, Johannesburg), C Feldman (Division of Pulmonology, Department of Medicine, Johannesburg Hospital and University of the Witwatersrand, Johannesburg), D C Grolman (General Surgeon and Intensivist, Sandton Mediclinic, Johannesburg), D Muckart (Associate Professor of Surgery, Director of Surgical Intensive Care, Department of Surgery, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban), J Pretorius (Surgical Intensive Care Unit, Department of Surgery, Pretoria Academic Hospital and University of Pretoria, Pretoria), G A Richards (Director Critical Care, Johannesburg Hospital and Principal Physician, Division of Pulmonology, University of the Witwatersrand, Johannesburg), M Senekal (Drs Dietrich, Street, Senekal and partners, Pathcare, Cape Town), W Sieling (Infectious Diseases Specialist and General Physician, Pretoria East Hospital, Pretoria)
Notes